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1 Introduction
Language models that are pretrained on large
amounts of non-annotated data have proven them-
selves useful in numerous downstream tasks. Al-
though they successfully learn good representations
for syntax they struggle with capturing semantic
meaning (Tenney et al., 2019; Wu et al., 2021).
To circumvent this, (Wu et al., 2021) proposes infusing
additional semantic information into language mod-
els. Concretely, they use RoBERTa as a starting point,
with a relational graph convolutional network (RGCN)
(Schlichtkrull et al., 2018) which is stacked on-top of
the transformer. Using DELPH-IN minimal recursion
semantics (DM) (Ivanova et al., 2012; Oepen et al., 2014)
they build a semantic graph whose nodes are popu-
lated with the corresponding contextualized embed-
dings from the RoBERTa transformer.

2 Our Contribution
Our contribution lies in using abstract meaning rep-
resentation (AMR), a high level semantic abstraction
(Banarescu et al., 2013), instead of DM as used in (Wu
et al., 2021) for infusing semantic information into lan-
guage models. This is based on the hypothesis that
AMR graphs contain additional relevant semantic in-
formation compared to DM graphs.
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Figure 1: Illustration of the three modes we are evaluating (the graph is ei-
ther AMR or DM). The weights of the non coloured components are frozen and
hence they are not being trained.

We perform detailed ablations on semantic under-
standing in languagemodels paired with a graph neu-
ral network on multiple GLUE (Wang et al., 2018) sub-

tasks. We investigate the impact of AMR versus DM in
a number of different settings: (1) fine-tuning the un-
derlying transformer, (2) freezing transformer weights
and (3) using non-contextualized embeddings.
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Figure 2: Illustration of our AMR preprocessing pipeline.

To generate AMR representations, we build a data pro-
cessing pipeline using (Jascob, 2022; Goodman, 2020).
As AMR abstracts the semantics of a sentence, there
are no longer direct alignments between AMR graph
nodes and parts of a sentence, as we had with DM.
Hence, we use a Rule Based Word Aligner to assign to-
kens of the sentence to the individual nodes of the
AMR graph.

3 Results and Analysis
MNLI

Models RTE QNLI ID. OOD.
RoBERTa byWu et al. (2021) 79.0±1.6 93.0±0.3 87.7±0.2 87.3±0.3

DM 79.66±0.55 92.61±0.01 87.15±0.10 87.09±0.04

AMR 79.18±2.17 92.89±0.13 87.15±0.01 87.20±0.08

DM static embeddings 50.78±0.21 70.53±0.23 70.20±0.18 70.19±0.02

AMR static embeddings 52.95±0.91 69.70±0.01 67.46±0.13 67.52±0.18

DM fixed encoder 61.61±2.11 84.66±0.23 79.04±0.23 79.27±0.08

AMR fixed encoder 59.93±2.01 84.47±0.14 77.59±0.01 78.34±0.20

Figure 3: Analogous to the SIFT paper, we report mean ± standard deviation;
for each bold entry of the DM or AMR model, the corresponding mean minus
the standard deviation is no worse than the correspondingmean, of the oppo-
site AMR or DM, plus standard deviation.

We evaluate all our models on the GLUE (Wang et al.,
2018) subtasks RTE, QNLI and MNLI (reporting accura-
cies on ID as well as OOD).

Results of the Ablation Study Looking at the results, we
see that RoBERTa performs at least 15 percent better
than all of ourmodels in the static embedding training
mode (where no language models are used). Hence,
our first result is that the contribution in capturing se-
mantic meaning of the RGCN is very small compared
to the contribution of the language model.
Next, we investigate which part of a language model
contributes to the success in capturing semantics. We
observe that all of our models in the fixed encoder
training mode perform at least 6 percent better than
the corresponding ones in the static embedding train-
ing mode. Likewise, our models in normal training

mode perform at least 7 percent better than the cor-
responding ones in fixed encoder trainingmode. Thus,
we conclude that both using the contextualized em-
beddings, and finetuning the weights of RoBERTa play
a significant role in capturing semantic information as
their respective performance improvements are con-
sistent throughout all tests conducted.

ComparingDMandAMR Themost significant casewhere
AMR models perform better than the DM is in the
static embedding training mode on the RTE dataset.
They achieve an accuracy 2 percent better than the DM
model.
However, on the MNLI dataset DM dominates AMR
models by 2-3 percent in static and fixed training
modes, but while almost having the same perfor-
mance in the normal training mode.
Hence,we are unable to conclude that one represen-
tation is better than the other.

4 Conclusions
Weconclude that the impact of infusing addi-
tional semantic information is minor in com-
parison to the effect of a language model
such as RoBERTa. Moreover, between DMand
AMR it is unclear which one provides more
utility to our model as their performance
ranges are very similar and often overlap.
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